Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 9.895
1.
Theor Appl Genet ; 137(6): 125, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727862

KEY MESSAGE: PHOTOPERIOD-1 homoeologous gene copies play a pivotal role in regulation of flowering time in wheat. Here, we show that their influence also extends to spike and shoot architecture and even impacts root development. The sequence diversity of three homoeologous copies of the PHOTOPERIOD-1 gene in European winter wheat was analyzed by Oxford Nanopore amplicon-based multiplex sequencing and molecular markers in a panel of 194 cultivars representing breeding progress over the past 5 decades. A strong, consistent association with an average 8% increase in grain yield was observed for the PpdA1-Hap1 haplotype across multiple environments. This haplotype was found to be linked in 51% of cultivars to the 2NS/2AS translocation, originally introduced from Aegilops ventricosa, which leads to an overestimation of its effect. However, even in cultivars without the 2NS/2AS translocation, PpdA1-Hap1 was significantly associated with increased grain yield, kernel per spike and kernel per m2 under optimal growth conditions, conferring a 4% yield advantage compared to haplotype PpdA1-Hap4. In contrast to Ppd-B1 and Ppd-D1, the Ppd-A1 gene exhibits novel structural variations and a high number of SNPs, highlighting the evolutionary changes that have occurred in this region over the course of wheat breeding history. Additionally, cultivars carrying the photoperiod-insensitive Ppd-D1a allele not only exhibit earlier heading, but also deeper roots compared to those with photoperiod-sensitive alleles under German conditions. PCR and KASP assays have been developed that can be effectively employed in marker-assisted breeding programs to introduce these favorable haplotypes.


Haplotypes , Plant Roots , Triticum , Triticum/genetics , Triticum/growth & development , Plant Roots/genetics , Plant Roots/growth & development , Phenotype , Polymorphism, Single Nucleotide , Plant Breeding , Photoperiod , Genes, Plant , Genetic Markers
2.
Elife ; 122024 May 14.
Article En | MEDLINE | ID: mdl-38743049

The circadian clock enables anticipation of the day/night cycle in animals ranging from cnidarians to mammals. Circadian rhythms are generated through a transcription-translation feedback loop (TTFL or pacemaker) with CLOCK as a conserved positive factor in animals. However, CLOCK's functional evolutionary origin and mechanism of action in basal animals are unknown. In the cnidarian Nematostella vectensis, pacemaker gene transcript levels, including NvClk (the Clock ortholog), appear arrhythmic under constant darkness, questioning the role of NvCLK. Utilizing CRISPR/Cas9, we generated a NvClk allele mutant (NvClkΔ), revealing circadian behavior loss under constant dark (DD) or light (LL), while maintaining a 24 hr rhythm under light-dark condition (LD). Transcriptomics analysis revealed distinct rhythmic genes in wild-type (WT) polypsunder LD compared to DD conditions. In LD, NvClkΔ/Δ polyps exhibited comparable numbers of rhythmic genes, but were reduced in DD. Furthermore, under LD, the NvClkΔ/Δ polyps showed alterations in temporal pacemaker gene expression, impacting their potential interactions. Additionally, differential expression of non-rhythmic genes associated with cell division and neuronal differentiation was observed. These findings revealed that a light-responsive pathway can partially compensate for circadian clock disruption, and that the Clock gene has evolved in cnidarians to synchronize rhythmic physiology and behavior with the diel rhythm of the earth's biosphere.


Circadian Clocks , Circadian Rhythm , Animals , Circadian Rhythm/genetics , Circadian Clocks/genetics , Sea Anemones/genetics , Sea Anemones/physiology , CLOCK Proteins/genetics , CLOCK Proteins/metabolism , Photoperiod , Cnidaria/physiology , Cnidaria/genetics
3.
Planta ; 259(6): 150, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727772

MAIN CONCLUSION: The hop phenological cycle was described in subtropical condition of Brazil showing that flowering can happen at any time of year and this was related to developmental molecular pathways. Hops are traditionally produced in temperate regions, as it was believed that vernalization was necessary for flowering. Nevertheless, recent studies have revealed the potential for hops to flower in tropical and subtropical climates. In this work, we observed that hops in the subtropical climate of Minas Gerais, Brazil grow and flower multiple times throughout the year, independently of the season, contrasting with what happens in temperate regions. This could be due to the photoperiod consistently being inductive, with daylight hours below the described threshold (16.5 h critical). We observed that when the plants reached 7-9 nodes, the leaves began to transition from heart-shaped to trilobed-shaped, which could be indicative of the juvenile to adult transition. This could be related to the fact that the 5th node (in plants with 10 nodes) had the highest expression of miR156, while two miR172s increased in the 20th node (in plants with 25 nodes). Hop flowers appeared later, in the 25th or 28th nodes, and the expression of HlFT3 and HlFT5 was upregulated in plants between 15 and 20 nodes, while the expression of HlTFL3 was upregulated in plants with 20 nodes. These results indicate the role of axillary meristem age in regulating this process and suggest that the florigenic signal should be maintained until the hop plants bloom. In addition, it is possible that the expression of TFL is not sufficient to inhibit flowering in these conditions and promote branching. These findings suggest that the reproductive transition in hop under inductive photoperiodic conditions could occur in plants between 15 and 20 nodes. Our study sheds light on the intricate molecular mechanisms underlying hop floral development, paving the way for potential advancements in hop production on a global scale.


Flowers , Gene Expression Regulation, Plant , Humulus , Photoperiod , Plant Leaves , Flowers/genetics , Flowers/growth & development , Flowers/physiology , Humulus/genetics , Humulus/growth & development , Humulus/physiology , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/physiology , Plant Leaves/metabolism , Seasons , Brazil , MicroRNAs/genetics , MicroRNAs/metabolism , Tropical Climate
4.
Theor Appl Genet ; 137(5): 115, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38691245

KEY MESSAGE: This study found that the genes, PPD-H1 and ELF3, control the acceleration of plant development under speed breeding, with important implications for optimizing the delivery of climate-resilient crops. Speed breeding is a tool to accelerate breeding and research programmes. Despite its success and growing popularity with breeders, the genetic basis of plant development under speed breeding remains unknown. This study explored the developmental advancements of barley genotypes under different photoperiod regimes. A subset of the HEB-25 Nested Association Mapping population was evaluated for days to heading and maturity under two contrasting photoperiod conditions: (1) Speed breeding (SB) consisting of 22 h of light and 2 h of darkness, and (2) normal breeding (NB) consisting of 16 h of light and 8 h of darkness. GWAS revealed that developmental responses under both conditions were largely controlled by two loci: PPDH-1 and ELF3. Allelic variants at these genes determine whether plants display early flowering and maturity under both conditions. At key QTL regions, domesticated alleles were associated with late flowering and maturity in NB and early flowering and maturity in SB, whereas wild alleles were associated with early flowering under both conditions. We hypothesize that this is related to the dark-dependent repression of PPD-H1 by ELF3 which might be more prominent in NB conditions. Furthermore, by comparing development under two photoperiod regimes, we derived an estimate of plasticity for the two traits. Interestingly, plasticity in development was largely attributed to allelic variation at ELF3. Our results have important implications for our understanding and optimization of speed breeding protocols particularly for introgression breeding and the design of breeding programmes to support the delivery of climate-resilient crops.


Genotype , Hordeum , Phenotype , Photoperiod , Plant Breeding , Quantitative Trait Loci , Hordeum/genetics , Hordeum/growth & development , Alleles , Flowers/growth & development , Flowers/genetics , Chromosome Mapping , Genes, Plant , Polymorphism, Single Nucleotide , Plant Proteins/genetics , Plant Proteins/metabolism
5.
BMC Plant Biol ; 24(1): 333, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664694

BACKGROUND: The circadian clock, also known as the circadian rhythm, is responsible for predicting daily and seasonal changes in the environment, and adjusting various physiological and developmental processes to the appropriate times during plant growth and development. The circadian clock controls the expression of the Lhcb gene, which encodes the chlorophyll a/b binding protein. However, the roles of the Lhcb gene in tea plant remain unclear. RESULTS: In this study, a total of 16 CsLhcb genes were identified based on the tea plant genome, which were distributed on 8 chromosomes of the tea plant. The promoter regions of CsLhcb genes have a variety of cis-acting elements including hormonal, abiotic stress responses and light response elements. The CsLhcb family genes are involved in the light response process in tea plant. The photosynthetic parameter of tea leaves showed rhythmic changes during the two photoperiod periods (48 h). Stomata are basically open during the day and closed at night. Real-time quantitative PCR results showed that most of the CsLhcb family genes were highly expressed during the day, but were less expressed at night. CONCLUSIONS: Results indicated that CsLhcb genes were involved in the circadian clock process of tea plant, it also provided potential references for further understanding of the function of CsLhcb gene family in tea plant.


Camellia sinensis , Circadian Rhythm , Photosynthesis , Photosynthesis/genetics , Camellia sinensis/genetics , Camellia sinensis/physiology , Circadian Rhythm/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Genes, Plant , Multigene Family , Chlorophyll Binding Proteins/genetics , Chlorophyll Binding Proteins/metabolism , Photoperiod
6.
Chronobiol Int ; 41(4): 548-560, 2024 Apr.
Article En | MEDLINE | ID: mdl-38557404

Chronic consumption of a high-calorie diet coupled with an altered sleep-wake cycle causes disruption of circadian clock that can impact the gut microbiome leading to metabolic syndrome and associated diseases. Herein, we investigate the effects of a high fat high fructose diet (H) alone or in combination with photoperiodic shifts induced chronodisruption (CD) on gut microbiota of C57BL/6J male mice. Further, the merits of daily evening intraperitoneal administration of melatonin in restoring gut microbiota are studied herein. Experimental groups viz. H, CD and HCD mice recorded higher levels of serum pro-inflammatory cytokines (TNF-α and IL-6) and lower levels of the anti-inflammatory cytokine, IL-10. These findings correlate with a concomitant increase in the transcripts of TLR4, TNF-α, and IL-6 in small intestine of the said groups. A decrement in mRNA levels of Ocln, ZO-1 and Vdr in these groups implied towards an altered gut permeability. These results were in agreement with the observed decrement in percentage abundance of total gut microflora and Firmicutes: Bacteroidetes (F/B) ratio. Melatonin administration accounted for lower-level inflammation (serum and gut) along with an improvement in gut permeability markers. The total abundance of gut microflora and F/B ratio showed an improvement in all the melatonin-treated groups and the same is the highlight of this study. Taken together, our study is the first to report perturbations in gut microbiota resulting due to a combination of photoperiodic shifts induced CD and a high fat high calorie diet-induced lifestyle disorder. Further, melatonin-mediated rejuvenation of gut microbiome provides prima facie evidence of its role in improving gut dysbiosis that needs a detailed scrutiny.


Circadian Rhythm , Diet, High-Fat , Gastrointestinal Microbiome , Melatonin , Mice, Inbred C57BL , Animals , Melatonin/pharmacology , Gastrointestinal Microbiome/drug effects , Male , Circadian Rhythm/physiology , Mice , Cytokines/metabolism , Photoperiod , Inflammation
7.
Psychiatry Res ; 335: 115878, 2024 May.
Article En | MEDLINE | ID: mdl-38581863

Season-of-birth associations with psychiatric disorders point to environmental (co-)aetiological factors such as natural photoperiod that, if clarified, may allow interventions toward prevention. We systematically reviewed the literature concerning season-of-birth and bipolar disorder and depression and explored associations between the perinatal natural photoperiod and these outcomes in a cross-sectional analysis of the UK Biobank database. We used mean daily photoperiod and relative photoperiod range (relative to the mean) in the 3rd trimester and, separately, in the first 3 months post birth as metrics. From review, increased risk of depression with late spring birth is compatible with increased odds of probable single episode-, probable recurrent-, and diagnosed depression (OR 2.85 95 %CI 1.6-5.08, OR 2.20 95 %CI 1.57-3.1, and OR 1.48 95 %CI 1.11-1.97, respectively) with increasing 3rd trimester relative photoperiod range for participants who experienced relatively non-extreme daily photoperiods. Risk of bipolar disorder with winter-spring birth contrasted with no consistent patterns of perinatal photoperiod metric associations with bipolar disorder in the UK Biobank. As natural photoperiod varies by both time-of-year and latitude, perinatal natural photoperiods (and a hypothesized mechanism of action via the circadian timing system and/or serotonergic circuitry associated with the dorsal raphe nucleus) may reconcile inconsistencies in season-of-birth associations. Further studies are warranted.


Bipolar Disorder , Photoperiod , Pregnancy , Female , Humans , Bipolar Disorder/epidemiology , Bipolar Disorder/diagnosis , Cross-Sectional Studies , Depression/epidemiology , UK Biobank , Biological Specimen Banks , Seasons
8.
FASEB J ; 38(7): e23565, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38558188

Circadian rhythms in metabolically active tissues are crucial for maintaining physical health. Circadian disturbance (CD) can cause various health issues, such as metabolic abnormalities and immune and cognitive dysfunctions. However, studies on the role of CD in immune cell development and differentiation, as well as the rhythmic expression of the core clock genes and their altered expression under CD, remain unclear. Therefore, we exposed C57bl/6j mice to repeated reversed light-dark cycles for 90 days to research the effects of CD on bone marrow (BM) hematopoietic function. We also researched the effects of CD on endogenous circadian rhythms, temporally dependent expression in peripheral blood and myeloid leukocytes, environmental homeostasis within BM, and circadian oscillations of hematopoietic-extrinsic cues. Our results confirmed that when the light and dark cycles around mice were frequently reversed, the circadian rhythmic expression of the two main circadian rhythm markers, the hypothalamic clock gene, and serum melatonin, was disturbed, indicating that the body was in a state of endogenous CD. Furthermore, CD altered the temporally dependent expression of peripheral blood and BM leukocytes and destroyed environmental homeostasis within the BM as well as circadian oscillations of hematopoietic-extrinsic cues, which may negatively affect BM hematopoiesis in mice. Collectively, these results demonstrate that circadian rhythms are vital for maintaining health and suggest that the association between CD and hematopoietic dysfunction warrants further investigation.


Bone Marrow , Circadian Clocks , Mice , Animals , Bone Marrow/metabolism , Photoperiod , Circadian Rhythm/physiology , Hematopoietic Stem Cells/metabolism , Mice, Inbred C57BL , Circadian Clocks/genetics
9.
Sci Rep ; 14(1): 7760, 2024 04 02.
Article En | MEDLINE | ID: mdl-38565934

Disrupted or atypical light-dark cycles disrupts synchronization of endogenous circadian clocks to the external environment; extensive circadian rhythm desynchrony promotes adverse health outcomes. Previous studies suggest that disrupted circadian rhythms promote neuroinflammation and neuronal damage post-ischemia in otherwise healthy mice, however, few studies to date have evaluated these health risks with aging. Because most strokes occur in aged individuals, we sought to identify whether, in addition to being a risk factor for poor ischemic outcome, circadian rhythm disruption can increase risk for vascular cognitive impairment and dementia (VCID). We hypothesized that repeated 6 h phase advances (chronic jet lag; CJL) for 8 weeks alters cerebrovascular architecture leading to increased cognitive impairments in aged mice. Female CJL mice displayed impaired spatial processing during a spontaneous alternation task and reduced acquisition during auditory-cued associative learning. Male CJL mice displayed impaired retention of the auditory-cued associative learning task 24 h following acquisition. CJL increased vascular tortuosity in the isocortex, associated with increased risk for vascular disease. These results demonstrate that CJL increased sex-specific cognitive impairments coinciding with structural changes to vasculature in the brain. We highlight that CJL may accelerate aged-related functional decline and could be a crucial target against disease progression.


Circadian Rhythm , Dementia, Vascular , Animals , Mice , Male , Female , Circadian Rhythm/physiology , Photoperiod , Recognition, Psychology , Dementia, Vascular/etiology , Cognition
10.
Sci Rep ; 14(1): 7778, 2024 04 02.
Article En | MEDLINE | ID: mdl-38565587

Laboratory animals are typically maintained under 12-h light and 12-h dark (12:12 LD) conditions with a daytime light intensity of ~ 200 lx. In this study, we designed an apparatus that allowed mice to self-select the room light intensity by nose poking. We measured the behavioral rhythms of the mice under this self-controlled light regimen. The mice quickly learned the relationship between their nose pokes and the resulting changes in the light intensity. Under these conditions, the mice exhibited free-running circadian behavior with a period of 24.5 ± 0.4 h. This circadian period was ~ 1 h longer than that of the same strain of mice when they were kept in constant darkness (DD) after 12:12 LD entrainment, and the lengthened period lasted for at least 30 days. The rhythm of the light intensity controlled by the mice also exhibited a similar period, but the phase of the illuminance rhythm preceded the phase of the locomotor activity rhythm. Mice that did not have access to the light controller were also entrained to the illuminance cycle produced by the mice that did have access to the light controller, but with a slightly delayed phase. The rhythm was likely controlled by the canonical circadian clock because mice with tau mutations in the circadian clock gene CSNK1E exhibited short periods of circadian rhythm under the same conditions. These results indicate that the free-running period of mice in the wild may differ from what they exhibit if they are attuned by forced light cycles in laboratories because mice in their natural habitats can self-control their exposure to ambient light, similar to our experimental conditions.


Circadian Rhythm , Motor Activity , Mice , Animals , Light , Photoperiod , Darkness
11.
Biomolecules ; 14(4)2024 Apr 10.
Article En | MEDLINE | ID: mdl-38672481

Soybean [Glycine max (L.) Merr.] is a short-day (SD) plant that is sensitive to photoperiod, which influences flowering, maturity, and even adaptation. TEOSINTE-BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factors have been shown to regulate photoperiodic flowering. However, the roles of TCPs in SD plants such as soybean, rice, and maize remain largely unknown. In this study, we cloned the GmTCP40 gene from soybean and investigated its expression pattern and function. Compared with wild-type (WT) plants, GmTCP40-overexpression plants flowered earlier under long-day (LD) conditions but not under SD conditions. Consistent with this, the overexpression lines showed upregulation of the flowering-related genes GmFT2a, GmFT2b, GmFT5a, GmFT6, GmAP1a, GmAP1b, GmAP1c, GmSOC1a, GmSOC1b, GmFULa, and GmAG under LD conditions. Further investigation revealed that GmTCP40 binds to the GmAP1a promoter and promotes its expression. Analysis of the GmTCP40 haplotypes and phenotypes of soybean accessions demonstrated that one GmTCP40 haplotype (Hap6) may contribute to delayed flowering at low latitudes. Taken together, our findings provide preliminary insights into the regulation of flowering time by GmTCP40 while laying a foundation for future research on other members of the GmTCP family and for efforts to enhance soybean adaptability.


Flowers , Gene Expression Regulation, Plant , Glycine max , Photoperiod , Plant Proteins , Promoter Regions, Genetic , Glycine max/genetics , Glycine max/metabolism , Glycine max/growth & development , Flowers/genetics , Flowers/growth & development , Promoter Regions, Genetic/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Plants, Genetically Modified/genetics , Up-Regulation/genetics
12.
Front Biosci (Landmark Ed) ; 29(4): 156, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38682211

BACKGROUND: Environmental conditions, such as photoperiod, affect the developmental response of plants; thus, plants have evolved molecular mechanisms to adapt to changes in photoperiod. In Bougainvillea spp., the mechanism of flower formation underlying flowering control techniques remains poorly understood, and the physiological changes that occur during flower bud formation and the expression of related genes are not yet fully understood. METHODS: In this study, we induced flowering of potted Bougainvillea glabra 'Sao Paulo' plants under light-control treatments and analyzed their effects on flowering time, number of flower buds, flowering quality, as well as quality of flower formation, which was analyzed using transcriptome sequencing. RESULTS: Light-control treatment effectively induced the rapid formation of flower buds and early flowering in B. glabra 'Sao Paulo', with the time of flower bud formation being 119 days earlier and the flowering period extended six days longer than those of the control plants. The light-control treatment caused the bracts to become smaller and lighter in color, while the number of flowers increased, and the neatness of flowering improved. Transcriptome sequencing of the apical buds identified 1235 differentially expressed genes (DEGs) related to the pathways of environmental adaptation, biosynthesis of other secondary metabolites, glycan biosynthesis and metabolism, and energy metabolism. DEGs related to gibberellin metabolism were analyzed, wherein five DEGs were identified between the control and treatment groups. Transcriptomic analysis revealed that the gibberellin regulatory pathway is linked to flowering. Specifically, GA and GID1 levels increased during this process, enhancing DELLA protein degradation. However, decreasing this protein's binding to CO did not halt FT upregulation, thereby advancing the flowering of B. glabra 'Sao Paulo'. CONCLUSIONS: The findings of our study have implications for future research on photoperiod and its role in controlling flowering timing of Bougainvillea spp.


Flowers , Gene Expression Regulation, Plant , Photoperiod , Flowers/genetics , Flowers/growth & development , Flowers/metabolism , Nyctaginaceae/genetics , Nyctaginaceae/growth & development , Nyctaginaceae/metabolism , Transcriptome , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Profiling
13.
Trop Anim Health Prod ; 56(3): 125, 2024 Apr 13.
Article En | MEDLINE | ID: mdl-38613714

Photoperiod manipulation is emerging as an effective approach for regulating physiological functions in fish. This study aimed to assess the impact of photoperiod on the growth performance, haematological responses, and economic returns of the endangered and highly valued Indian butter catfish, Ompok bimaculatus. Fish with an average body weight of 28.60 ± 4.78 g were randomly placed in six FRP tanks, each measuring 120 × 45 × 60 cm3. Each tank contained 20 fish exposed to a light intensity of 1500 lx under different photoperiods [24:0 light: dark (L: D), 15 L: 9D, 12 L: 12D, 9 L: 15D, 0 L: 24D and a natural photoperiod (control)], and fed at a daily rate of 2% of their body weight twice daily for 60 days. The fish in the 15 L: 9D photoperiod exhibited the highest final weight (g), percentage weight gain, specific growth rate (SGR) and survival rate, while the lowest was displayed in 24 L: 0D photoperiod group. The feed conversion ratio (FCR) was at its lowest in the catfish subjected to the 15 L: 9D photoperiod. Regarding haematological parameters, the 15 L: 9D photoperiod group showed higher total erythrocyte count, total leukocyte count, haemoglobin levels, and haematocrit values compared to the other groups. Conversely, the 0 L: 24D group, which experienced prolonged darkness, exhibited the lowest values in these parameters. Moreover, the 24 L: 0D, 9 L: 15D, and 0 L: 24D groups displayed a lower mean corpuscular volume (MCV) but higher mean corpuscular haemoglobin (MCH) and mean corpuscular haemoglobin concentration (MCHC) when compared to the control group. The economic analysis revealed that O. bimaculatus reared in a moderate photoperiod (15 L: 9D) displayed better growth, feed utilization, and overall health. This finding suggests that adopting a 15 L: 9D photoperiod can lead to enhanced production and improved economic returns for farmers culturing this high-value catfish in the future.


Catfishes , Animals , Photoperiod , Body Weight , Erythrocyte Indices/veterinary , Hematocrit/veterinary
14.
PLoS One ; 19(4): e0302388, 2024.
Article En | MEDLINE | ID: mdl-38648207

The anadromous Atlantic salmon undergo a preparatory physiological transformation before seawater entry, referred to as smoltification. Key molecular developmental processes involved in this life stage transition, such as remodeling of gill functions, are known to be synchronized and modulated by environmental cues like photoperiod. However, little is known about the photoperiod influence and genome regulatory processes driving other canonical aspects of smoltification such as the large-scale changes in lipid metabolism and energy homeostasis in the developing smolt liver. Here we generate transcriptome, DNA methylation, and chromatin accessibility data from salmon livers across smoltification under different photoperiod regimes. We find a systematic reduction of expression levels of genes with a metabolic function, such as lipid metabolism, and increased expression of energy related genes such as oxidative phosphorylation, during smolt development in freshwater. However, in contrast to similar studies of the gill, smolt liver gene expression prior to seawater transfer was not impacted by photoperiodic history. Integrated analyses of gene expression, chromatin accessibility, and transcription factor (TF) binding signatures highlight chromatin remodeling and TF dynamics underlying smolt gene regulatory changes. Differential peak accessibility patterns largely matched differential gene expression patterns during smoltification and we infer that ZNF682, KLFs, and NFY TFs are important in driving a liver metabolic shift from synthesis to break down of organic compounds in freshwater. Overall, chromatin accessibility and TFBS occupancy were highly correlated to changes in gene expression. On the other hand, we identified numerous differential methylation patterns across the genome, but associated genes were not functionally enriched or correlated to observed gene expression changes across smolt development. Taken together, this work highlights the relative importance of chromatin remodeling during smoltification and demonstrates that metabolic remodeling occurs as a preadaptation to life at sea that is not to a large extent driven by photoperiod history.


Liver , Salmo salar , Animals , Liver/metabolism , Salmo salar/genetics , Salmo salar/growth & development , Salmo salar/metabolism , Photoperiod , DNA Methylation , Genome , Transcriptome , Transcription Factors/metabolism , Transcription Factors/genetics , Seawater , Lipid Metabolism/genetics , Fish Proteins/genetics , Fish Proteins/metabolism
15.
Exp Appl Acarol ; 92(4): 777-794, 2024 May.
Article En | MEDLINE | ID: mdl-38637448

The European red mite Panonychus ulmi (Koch) is widely distributed and it can severely affect pome fruit crops, particularly apple. Pest outbreaks are related to an overuse of non-selective pesticide treatments that lead to the development of resistance and the absence of natural enemies in the orchard. A key aspect to optimize the use of pesticide treatments in the context of IPM is to increase the knowledge on the biology and ecology of the pest to better predict population dynamics and outbreaks. For the European red mite, knowledge on the conditions that lead to diapause breaking by winter eggs is essential to model population dynamics. To increase this knowledge, winter eggs were collected during field surveys in northen Spain during three years and egg hatching was monitored under controlled temperature and photoperiod conditions in the laboratory. The "number of days exposed to cold temperatures" was the most significant factor that positively affected hatching of overwintering eggs. The time required for 50% of the egg population to hatch (T50%) was also negatively modulated by the duration of exposure to cold temperature. The temperature threshold for postdiapause eggs development collected from the field was estimated between 5 and 6 ºC in 2005 and 2007, respectively. Moreover, the degree-days required for post diapause development were estimated between 263.2 and 270.3, depending on the year of collection. Collectively, we provide additional information on the diapause termination and postdiapause development of the European red mite that may effectively contribute to optimize pest population models.


Diapause , Ovum , Temperature , Tetranychidae , Animals , Tetranychidae/physiology , Tetranychidae/growth & development , Ovum/growth & development , Ovum/physiology , Spain , Photoperiod , Cold Temperature , Female , Seasons
16.
Curr Biol ; 34(9): 2002-2010.e3, 2024 May 06.
Article En | MEDLINE | ID: mdl-38579713

Some organisms have developed a mechanism called environmental sex determination (ESD), which allows environmental cues, rather than sex chromosomes or genes, to determine offspring sex.1,2,3,4 ESD is advantageous to optimize sex ratios according to environmental conditions, enhancing reproductive success.5,6 However, the process by which organisms perceive and translate diverse environmental signals into offspring sex remains unclear. Here, we analyzed the environmental perception mechanism in the crustacean, Daphnia pulex, a seasonal (photoperiodic) ESD arthropod, capable of producing females under long days and males under short days.7,8,9,10 Through breeding experiments, we found that their circadian clock likely contributes to perception of day length. To explore this further, we created a genetically modified daphnid by knocking out the clock gene, period, using genome editing. Knockout disrupted the daphnid's ability to sustain diel vertical migration (DVM) under constant darkness, driven by the circadian clock, and leading them to produce females regardless of day length. Additionally, when exposed to an analog of juvenile hormone (JH), an endocrine factor synthesized in mothers during male production, or subjected to unfavorable conditions of high density and low food availability, these knockout daphnids produced males regardless of day length, like wild-type daphnids. Based on these findings, we propose that recognizing short days via the circadian clock is the initial step in sex determination. This recognition subsequently triggers male production by signaling the endocrine system, specifically via the JH signal. Establishment of a connection between these two processes may be the crucial element in evolution of ESD in Daphnia.


Circadian Clocks , Daphnia , Photoperiod , Sex Determination Processes , Animals , Daphnia/genetics , Daphnia/physiology , Circadian Clocks/genetics , Circadian Clocks/physiology , Female , Male
17.
Sci Rep ; 14(1): 9950, 2024 04 30.
Article En | MEDLINE | ID: mdl-38688941

The degree to which burrowing, soil-dwelling caecilian amphibians spend time on the surface is little studied, and circadian rhythm has not been investigated in multiple species of this order or by manipulating light-dark cycles. We studied surface-activity rhythm of the Indian caecilians Ichthyophis cf. longicephalus and Uraeotyphlus cf. oxyurus (Ichthyophiidae) and Gegeneophis tejaswini (Grandisoniidae), under LD, DD and DL cycles. We examined daily surface activity and the role of light-dark cycles as a zeitgeber. All three species were strictly nocturnal and G. tejaswini displayed the least surface activity. Four out of thirteen individuals, two I. cf. longicephalus, one G. tejaswini and one U. cf. oxyurus, displayed a more or less distinct surface-activity rhythm in all three cycles, and for the nine other animals the activity patterns were not evident. An approximately 24 h free-run period was observed in the three species. When the light-dark cycle was inverted, surface activity in the three species shifted to the dark phase. The findings of this study suggest that caecilians have a weak circadian surface-activity rhythm, and that the absence of light can act as a prominent zeitgeber in these burrowing, limbless amphibians.


Amphibians , Circadian Rhythm , Soil , Animals , Circadian Rhythm/physiology , Amphibians/physiology , Soil/chemistry , Photoperiod , Behavior, Animal/physiology
18.
Gene ; 913: 148378, 2024 Jun 30.
Article En | MEDLINE | ID: mdl-38490512

The gene encoding EARLY FLOWERING3 (ELF3) is necessary for photoperiodic flowering and the normal regulation of circadian rhythms. It provides important information at the cellular level to uncover the biological mechanisms that improve plant growth and development. ELF3 interactions with transcription factors such as BROTHER OF LUX ARRHYTHMO (BOA), LIGHT-REGULATED WD1 (LWD1), PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), PHYTOCHROME-INTERACTING FACTOR 7 (PIF7), and LUX ARRHYTHMO (LUX) suggest a role in evening complex (EC) independent pathways, demanding further investigation to elucidate the EC-dependent versus EC-independent mechanisms. The ELF3 regulation of flowering time about photoperiod and temperature variations can also optimize crop cultivation across diverse latitudes. In this review paper, we summarize how ELF3's role in the circadian clock and light-responsive flowering control in crops offers substantial potential for scientific advancement and practical applications in biotechnology and agriculture. Despite its essential role in crop adaptation, very little is known in many important crops. Consequently, comprehensive and targeted research is essential for extrapolating ELF3-related insights from Arabidopsis to other crops, utilizing both computational and experimental methodologies. This research should prioritize investigations into ELF3's protein-protein interactions, post-translational modifications, and genomic targets to elucidate its contribution to accurate circadian clock regulation.


Arabidopsis Proteins , Arabidopsis , Circadian Clocks , Phytochrome , Circadian Clocks/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Arabidopsis/metabolism , Circadian Rhythm/genetics , Photoperiod , Phytochrome/genetics , Gene Expression Regulation, Plant , DNA-Binding Proteins/genetics
19.
New Phytol ; 242(2): 786-796, 2024 Apr.
Article En | MEDLINE | ID: mdl-38451101

Molecular genetic understanding of flowering time regulation is crucial for sorghum development. GRAIN NUMBER, PLANT HEIGHT AND HEADING DATE 7 (SbGhd7) is one of the six classical loci conferring photoperiod sensitivity of sorghum flowering. However, its functions remain poorly studied. The molecular functions of SbGhd7 were characterized. The gene regulatory network controlled by SbGhd7 was constructed and validated. The biological roles of SbGhd7 and its major targets were studied. SbGhd7 overexpression (OE) completely prevented sorghum flowering. Additionally, we show that SbGhd7 is a major negative regulator of flowering, binding to the promoter motif TGAATG(A/T)(A/T/C) and repressing transcription of the major florigen FLOWERING LOCUS T 10 (SbFT10) and floral activators EARLY HEADING DATE (SbEhd1), FLAVIN-BINDING, KELCH REPEAT, F-BOX1 (SbFKF1) and EARLY FLOWERING 3 (SbELF3). Reinforcing the direct effect of SbGhd7, SbEhd1 OE activated the promoters of three functional florigens (SbFT1, SbFT8 and SbFT10), dramatically accelerating flowering. Our studies demonstrate that SbGhd7 is a major repressor of sorghum flowering by directly and indirectly targeting genes for flowering activation. The mechanism appears ancient. Our study extends the current model of floral transition regulation in sorghum and provides a framework for a comprehensive understanding of sorghum photoperiod response.


Sorghum , Sorghum/metabolism , Plant Proteins/metabolism , Flowers/physiology , Florigen/metabolism , Photoperiod , Gene Expression Regulation, Plant
20.
PLoS One ; 19(3): e0300667, 2024.
Article En | MEDLINE | ID: mdl-38512974

Canopeo app was developed as a simple, accurate, rapid, and free tool to analyze ground cover fraction (GCF) from red-green-blue (RGB) images and videos captured in the field. With increasing interest in tools for plant phenotyping in controlled environments, the usefulness of Canopeo to identify differences in growth among Arabidopsis thaliana mutants in a controlled environment were explored. A simple imaging system was used to compare Arabidopsis mutants based on the FLAVIN-BINDING, KELCH REPEAT, F-BOX-1 (FKF1) mutation, which has been identified with increased biomass accumulation. Two FKF1 lines such as null expression (fkf1-t) and overexpression (FKF1-OE) lines were used along with wild type (Col-0). Canopeo was used to phenotype plants, based on biomass estimations. Under long-day photoperiod, fkf1-t had increased cellulose biosynthesis, and therefore biomass. Resource partitioning favored seedling vigor and delayed onset of senescence. In contrast, FKF1-OE illustrated a determinative growth habit where plant resources are primarily allocated for seed production. This study demonstrates the use of Canopeo for model plants and highlights its potential for phenotyping broadleaved crops in controlled environments. The value of adapting Canopeo for lab use is those with limited experience and resources have access to phenotyping methodology that is simple, accessible, accurate, and cost-efficient in a controlled environment setting.


Arabidopsis Proteins , Arabidopsis , Mobile Applications , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Flowers/genetics , Photoperiod , Gene Expression Regulation, Plant
...